UN/USA TRAINING COURSE ON SATELLITE AIDED SEARCH AND RESCUE 19-23 JANUARY 2009

COSPAS-SARSAT SPACE SEGMENT

Introduction

 Search and Rescue Satellite Aided Tracking (SARSAT) satellites
Space segment assets and on-board instruments
Advantages of each satellite system
Satellite launch schedule

Future satellite systems

Satellites Types

Two types of operational satellites:

Low-Earth orbiting (LEO) satellites orbiting at ~ 850 km

Geosynchronous Earth orbiting (GEO) satellites orbiting at ~ 35786 km

LEOSAR Satellites

LEOSAR Satellites

LEOSAR Coverage

GEOSAR Satellites

Indian National Satellite (INSAT)

Geosynchronous Operational and Environmental Satellite (GOES)

Meteosat Second Generation (MSG)

GEO Satellite and SAR Instrument

MSG Satellite

GEOSAR Satellites

Earth Relative View 2009/01/20 16:42:31.0000 UTC INSAT 3A At a 'fixed' point 36,000 km above the Earth's surface **Continually monitors a large area of** Earth's surface Covers up to +/- 75° latitude **Presently have 4 operational** (GOES-11 @ 135W, GOES-12 @ 75W, INSAT-3A, and MSG-2)

SOES 10

GEOSAR Coverage

Advantages of a combined LEOSAR/GEOSAR System

Advantages of LEOSAR System over the GEOSAR System

- Locates beacons using Doppler shift processing. GEOSAR system does not have Doppler capability.
- **Detects and locates 121.5 MHz signals.** **after Feb. 1, 2009 N/A*
- Locates 406 MHz beacons. GEOSAR system only detects 406 MHz beacons.
- Provides global coverage for 406 MHz. GEOSAR system does not cover the polar areas.
- Provides improved detection probability for obstructed beacons.
- Receives higher power levels from beacons, which increases the probability for beacon detection.

Advantages of GEOSAR System over the LEOSAR System

For 406 MHz beacons only:

- >Near instantaneous detection.
- Near instantaneous location determintation for beacons with GPS capacity
- **Continuous monitoring of ~1/3 of Earth's surface**
- >Has a 46 minute mean time 'advantage' for first detection

Benefit of having both systems, beacon detection with obstruction

Space Segment Providers and On-Board Instruments

- **>** LEO Space Segment and Instrument Providers
 - **SARSAT**
 - •Canada Search & Rescue Repeater (SARR)
 - •France Search & Rescue Processor (SARP)
 - •U.S. Satellites
 - •Europe (Eumetsat) Satellites
- GEO Space Segment and Instrument Providers
 - U.S. GOES (East and West) Repeater (SARR)
 - India INSAT-3A Repeater Repeater (SARR)
 - Europe (Eumetsat) MSG Repeater (SARR)

Search and Rescue Repeater (SARR)

LEO "BENT PIPE"

> LEOSAR

- Receives at 121.5, 243, and 406 MHz frequency, then transmits a multiplexed downlink signal at 1544.5 MHz (RCP).
- No on-board position processing is performed.

GEOSAR

- Receives only at 406 MHz and re-transmits at 1544.5 MHz (LCP).
- No on-board processing is performed.

Search and Rescue Processor (SARP) w/On-Board Memory

> SARP

- Only on-board the LEO Satellites
- Digitally extracts the beacon ID
- Measures the signal's carrier frequency and time tags the measurement
- Immediately puts the received 406 MHz beacon uplink message into the continuous 2.4 kbps memory data stream transmission

On-Board Memory

- Stores all of the received and previously processed data
- Is completely transmitted (about every 3 minutes) on a continual basis
- Once memory is completely filled, oldest data is purged as new is entered

406 MHz Beacon SAR Processor

LEO Local and Global Coverage

Detection of a 121.5/243 MHz beacon *required* mutual visibility between beacon, satellite and ground station (LUT). Being phased out 2/1/09

406 MHz beacon detections can be detected immediately if mutual visibility is available or stored on board the satellite for re-broadcast later if no mutual visibility exists between satellite and LUT

Determining Beacon Locations From LEO Doppler Data

Resolving Ambiguity

Two Pass Solution for a Beacon Located in Brazil

LEGEND: **1** ground tracks of successive spacecraft orbits 1A, 1B Real and Image solutions from pass 1

2A, 2B Real and Image solutions from pass 2

Beacon Power Levels with Distance

 Because LEO satellites are much closer to the beacon than GEO satellites, LEO satellites receive higher power levels, which increases signal strength and the probability of beacon detection.

Use of GPS in Location Protocol Beacons

4 GPS Satellites

Use of GPS in **Location Protocol Beacons**

GPS Satellites

 \geq 24-satellite constellation \geq 4 satellites in view at all times Minimum of 3 satellites needed to compute locations. Additional satellites improve accuracy. \succ Transmit time and orbital data

406 MHz Beacon with GPS Receiver

belded GPS location

Uses satellite-beacon time difference to calculate distance from each GPS satellite

406 MHZ Message Wi

- Uses GPS satellite orbital data and distance from \succ beacon to calculate beacon location.
- Encodes location in 406 MHz message.

TTT

C/S Satellites

NOAA Plans for Continuity of Operational Satellite Programs NOAA Satellite Launches* Scheduled to Maintain Data Continuity (Calendar Years)

** Assumes METOP will provide the morning orbit and NOAA-N' will provide afternoon orbit instruments

On-orbit GOES storage

Extended operation

Future Cospas-Sarsat Satellite Constellations-MEOSAR

C/S MEO Satellites

- Distress Alerting Satellite System (DASS) (U.S.)
- Galileo (Europe)
- Glonass (Russia)

Earth CI Observer View 2009/01/20 16:39:10.0000 UTC Earth CI Observer, Earth Nadir, [km s deg]+

PS BIIR-13 (PRN 02)

GPS BIIM-17

EFS BIIR-08 (PRN 16)

GFS BIIR-07 (PRN 10)

55)

Questions? My contact information is below, thank you.

Mickey Fitzmaurice NOAA SARSAT program <u>Mickey.Fitzmaurice@noaa.gov</u>

(301) 817-4434