SARSAT Beacon Manufacturer's Workshop September 28, 2012

Second Generation Beacons

Presented by: Dr. Lisa Mazzuca/NASA

Background

- Cospas-Sarsat (C/S) has defined operational requirements based on use of a second generation of beacons
 - Operational Requirements for Cospas-Sarsat Second Generation 406 MHz Beacons, C/S G.008
 - Second Generation Beacon Implementation Plan (BIP), C/S R.017

Operational Requirements from G.008

Compatible with Cospas-Sarsat System

Minimum Requirements

- Independent location accuracy
- First burst transmission timeliness [3] seconds
- Increased performance in first 30 seconds
- Cancellation function
- Verification of Beacon Registration

Objective Requirements

- Better encoded location
 - > 30 m, 95% of the time within 5 minutes of activation
- Return Link Service (RLS)
- Additional data encoded in beacon message
- Automatic ELT activation on indication of emergency

Timeline (contained in BIP)

- According to C/S Operational Requirements, C/S G.008
 - LEOSAR SARP processing constraints limit the possible evolution of first generation beacon specifications
 - 2nd gen beacons after MEOSAR FOC not required to be LEOSAR SARP interoperable
 - 2nd gen beacons prior to MEOSAR FOC required to be LEOSAR SARP interoperable
 - MEOSAR D&E not dependent on availability of 2nd gen beacons
- BIP timeline created at C/S EWG-2 in September 2010
 - At the time, MEOSAR FOC was scheduled for January 2015. (ref. C/S R.012, MEOSAR Implementation Plan, Issue 1, Rev 5, Annex I)
 - BIP timeline derived to insure 2nd generation beacons approved by first C/S Open Council after MEOSAR FOC, October 2015
 - C/S Council meeting in October 2010 moved MEOSAR FOC to 2018 (ref. C/S R.012, MEOSAR Implementation Plan, Issue I, Rev 6, Annex I)
 - BIP timeline not adjusted accordingly, creating 2 year gap

U.S. and French Goals

- Improve system performance to meet or exceed C/S requirements
 - including detection probability, location accuracy and system capacity
- Modernize beacon signal for MEOSAR system
- Relax beacon requirements to reduce cost and complexity
- Collaborate with manufacturers to obtain the most competitive end product

Fully realize ability of Cospas-Sarsat to provide the gold standard of emergency distress location

Beacon Model : Functional

Beacon Transmitter

Beacon Receiver

Beacon Model : Physical

Message Format

Simple and efficient

- Single message structure with multiple protocols
- Investigating use of a modified Type Approval Certification (TAC) data base to provide some required data that is currently carried in the message
- Use of various schemes to encode some alpha-numeric data fields
- Message length to meet requirements with some margin
- Protected with a single BCH Forward Error Correction code to exceed Bit Error Rate requirement with minimal cost to beacon

RF Modulation

- Offset Quadrature Phase Shift Keying (OQPSK)
 - Industry standard
 - Many commercially available chip sets available
 - Relaxes requirements on amplifier
 - Increases system performance and efficiency of data transmission

Direct Sequence Spread Spectrum Code Division Multiple Access

- Industry standard basis for major performance improvements in detection, location and capacity
- Easy to implement code applied to digital data in software
- Relaxes beacon requirements
 - Oscillator frequency stability of 5-10 ppmillion orders of magnitude improvement over current 1-2 pp<u>billion</u>
 - > All beacons transmit at same center frequency
 - never have to change oscillator
 - different codes applied in software.

Local Detection and Homing Signal

- 406 MHz signal designed for local detection and homing
 - Replace 121.5 MHz homing signal simpler, single frequency beacon design
 - Collaborating with DF equipment manufacturers on signal design
 - Purpose built design will improve performance over current systems
 - Software configurable so beacon utilizes existing 406 MHz transmit chain

Contact Information

Dr. Lisa Mazzuca 301-286-2647 LISA.M.MAZZUCA@nasa.gov