

Electrical Engineering Capstone Design 2016-2017

Direction Finding on Spread Spectrum Signals (DFSSS)

1/c Shane Corbett and 1/c Kirsten Logan

Project Advisors:

Dr. Paul Crilly Dr. Ali Reza Dr. Richard Hartnett **Sponsor:** CG-761 – Mr. Ed Thiedeman

Introduction

- <u>Emergency Position Indicating Radio Beacon</u> (EPIRB)
- EPIRB has aided the CG in saving 39,000 lives

Needs and Objectives

- Problem: Coast Guard assets will not be able to DF on EPIRBS emitting the new Direct Sequence Spread Spectrum (DSSS) signal
- Goal: Create a continuous and user friendly system to home in on the new generation EPIRB signal

Requirements

- Make a continuous system
- Make a user friendly system
- Optimize efficiency of the system
 - Antenna construction
 - Cost of hardware

System Overview

Ē

System Overview

Antenna array: half-wave monopoles

USRPs and Clock equipment rack

New tower for increased processing

System Overview (rack view)

To the antennas topside

Incoming Calibration Signal

Ē

<u>Multiple Signal Classification</u> (MUSIC) Algorithm

- R = ASA^H + Q
 Eigen Decomposition of incoming data
- $J(\theta) = (\sum_{m=M+1}^{N} |\bar{a}^{H}(\theta) \cdot \bar{u}_{m}|)^{-1}$ Peak estimator function

GRC Transmitter

- Need to emulate new Direct Sequence Spread Spectrum Signal
- Consists of pseudo random binary data to spread signal around a center frequency

• EPIRB specs: GMSK: 1bit/symbol, 38,400 chips/sec

Center Frequency: 406.05MHz, null to null 76.8kHz.

Testing Procedure

- Test signal centered at 435MHz, λ =.6892m
- Far field pattern assumed at 6.892m
- Test at 15 yards = 13.716 or approximately 2 times the far field
- Calibrate and then data collect

Testing Procedure

Initial Problems Encountered

- Trouble understanding how to test the system
- Error due to multipath

Narrow Band, angle 6 degrees

Wide Band, angle 0 degrees

Narrow Band Data

Ē

Angle 0°

Test 1 (blue)	2.5
Test 2 (red)	2.3
Test 3 (green)	5.1
Average	3.3

Wide Band Data

Ē

Angle 0°

Test 1 (blue)	1.8
Test 2 (red)	3.6
Test 3 (green)	5.5
Average	3.6

Angle 30°

Test 1 (blue)	35.9
Test 2 (red)	31.8
Test 3	31.1
(green)	
Average	32.9

Wide Band Data

Angle 45°

Test 1 (blue)	52.8
Test 2 (red)	50.1
Test 3 (green)	49.1
Average	50.6

Continuous System

- Road to completion
 - MUSIC Block
 - User Datagram Protocol (UDP)
 - MySQL
- Achieved through MatLab_® and LibreOffice Base

Continuous System

Ē

Wide Band Data

Ē

Average	3.6
Std. Dev.	1.85

Angle 30°

Average	32.9
Std. Dev.	2.59

Wide Band Data

Angle 45°

Average	50.6
Std. Dev.	1.91

Future Work

- Expand to multidimensional array
- Explore optimization
- Create EPIRB message

Acknowledgements

- Dr. Paul Crilly
- Dr. Richard Hartnett
- Dr. Ali Reza
- CDR Armstrong
- Class of 2017 EEs

