SARSAT Beacon Manufacturer’s Workshop
September 28, 2012

Next Generation SARSAT Space Segment
MEOSAR

Prepared by:
Chris O’Connors
NOAA/NESDIS
Agenda

• MEOSAR Overview
• Space Segment
• Ground Segment
• MEOSAR POC
• MEOSAR Timeline
• Demonstration and Evaluation
• IOC and FOC Look Ahead
MEOSAR Overview
MEOSAR Overview

• MEOSAR Concept
 – Utilize multiple satellites with SAR repeaters, or “bent pipe”
 – Multiple antennas are used to receive the same beacon burst
 – The time difference of arrival (TDOA) and frequency difference of arrival (FDOA) is then used to determine location
 – One burst, received through 3 unique satellites, is capable of producing a location
 – Essentially, GPS location in reverse
MEOSAR Overview

• **Medium Earth Orbit (MEO) SAR / GPS**
 - Various studies determined that medium-earth orbiting (MEO) satellites provide a vastly improved space-based distress alerting and locating system.
 - NASA, with USAF Space and Air Combat Command, NOAA, and USCG are developing a capability on GPS satellites—SAR/GPS

• **MEOSAR provides**
 - A combination of the best assets of GEOSAR and LEOSAR
 - Near instantaneous notification and location of distress
 - Near 100% Availability
 - Better location accuracy
 - Global coverage
 - Full compatibility with current and future beacons
Space Segment

- Repeaters will be flown on Medium Earth Orbit (MEO) satellites
- Will utilize 3 Global Navigation Satellite System (GNSS) constellations
 - GPS (USA)
 - GLONASS (Russia)
 - Galileo (ESA)
- Current plan is to have 24 US MEOSAR instruments
- 72 MEOSAR instruments total
MEO vs. LEO Coverage
US MEOSAR Ground Segment Design

Components at NSOF

D&E National MEOLUTs

D&E International MEOLUTs

Frame Relay

Internet

MccMeeFtp Server

TOA/FOA Data

Alert and System Data

TOA/FOA Data

MCC DMZ

Firewall
Ground Segment

- Prototype ground station at NASA Goddard Space Flight Center
 - 4 antennas – capable of independently tracking 4 satellites
 - Proof of Concept testing successfully completed in 2008
 - May become future operational MEOLUT
 - Full participation in MEOSAR D&E testing
Ground Segment

• Accepted MEOLUT Wahiawa, Hawaii
 – 6 antenna – capable of tracking 6 satellites either S-band or L-band
 – Constructed in September 2011 and passed acceptance testing

• Future MEOLUT in Miami, Florida
 – 6 antenna – capable of tracking 6 satellites either S-band or L-band
 – Award by end of Sept 2012
 – Construction will begin Sept 2013, completed by Dec 2013
Distress Alerting Satellite System (DASS) Proof-of-Concept only

- **DASS Proof-of-Concept (POC) Space Segment**
 - Ten current on-orbit GPS Block IIR and IIF satellites carry DASS repeaters (Max of 20 satellites)
 - POC system uses existing GPS. Downlink at S-Band (Not ITU-allocated for SAR, but may possibly be used operationally)

- **Proof-of-Concept results to date:**
 - Demonstrated ability to locate beacons to greater than current Cospas-Sarsat accuracy using three or more satellites
 - System meets/exceeds theoretical capabilities
 - Tests are on-going

![Figure 1: GPS IIF Launch Schedule](image-url)
MEOSAR Timeline
US MEOSAR Timeline

• Phase I – Installation of Hawaii MEOLUT
• Phase II – Networking of Data
• Phase III – MEOSAR D&E
MEOSAR Demonstration and Evaluation (D&E)

• Goals

 – Characterize technical and operational performance
 – Evaluate operational effectiveness
 – Provide basis for recommendations on the integration of MEOSAR system into C/S
 • Basis for commissioning criteria
MEOSAR Demonstration and Evaluation (D&E)

• Technical tests
 – Processing threshold and system margin
 – Impact of interference
 – Valid and complete message acquisition
 – Location accuracy
 – System Capacity
 – Networked MEOLUT advantage
 – Combined MEO/GEO performance

* Multiple beacons needed, distributed globally, to successfully complete D&E testing
• Operational Tests
 – Time advantage
 – Unique detections
 – Volume of ground segment traffic
 – SAR/Galileo RLS
 – Direct and indirect benefits of MEOSAR system
MEOSAR Timeline
MEOSAR Constellation

<table>
<thead>
<tr>
<th></th>
<th>D&E Phase I</th>
<th>D&E Phase II</th>
<th>D&E Phase III</th>
<th>IOC</th>
<th>FOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DASS (S-Band)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned</td>
<td>(10)</td>
<td>5 (15)</td>
<td>2 (17)</td>
<td>3 (20)</td>
<td>0 (20)</td>
</tr>
<tr>
<td>Practical</td>
<td>(10)</td>
<td>1 (11)</td>
<td>1 (12)</td>
<td>1 (13)</td>
<td>1 (14)</td>
</tr>
<tr>
<td>SAR/GPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAR/Galileo*</td>
<td></td>
<td>2 (2)</td>
<td>2 (4)</td>
<td>4 (8)</td>
<td>4 (12)</td>
</tr>
<tr>
<td>SAR/GLONASS</td>
<td></td>
<td>1 (1)</td>
<td>1 (2)</td>
<td>0 (2)</td>
<td>0 (2)</td>
</tr>
<tr>
<td>L-Band Total</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>L+S-Band Total</td>
<td>11</td>
<td>15</td>
<td>18</td>
<td>23</td>
<td>28</td>
</tr>
</tbody>
</table>

* - Galileo launches based roughly on outside dates as provided in JC-26/Inf.17
† - GPS Block II satellites removed from totals after projected 12-year life

Anticipated MEOSAR Space Segment
Participating MEOLUTs D&E Phase I

Participating MEOLUTs D&E Phase I: 1 January 2013
(Minimum 4+ L/S Band Visibility 78.0%)
MEOLUTs at IOC: 1 January 2015
Anticipated Operational MEOLUTs at FOC

MEOLUTs at FOC: 1 January 2018
MEOSAR D&E Beacon Request

• T-5 Independent 2D Location Capability for Operational Beacons
 – Requesting from manufacturer operationally coded EPIRBS, ELTS, PLBS with 121.5 MHz disabled but GPS enabled
 – 2 of each type, prefer multiple manufacturers – total of [20] beacons
Contact Information

SARSAT Program Office
NOAA Satellite Ops Facility
Suitland, MD 20746

www.sarsat.noaa.gov

Christopher O’Connors
301-817-3846
Christopher.O’Connors@noaa.gov