SARSAT and Beacon Modernization

Beacon Manufacturer Workshop May 21, 2010

Dan Lemon 443 964-4204 dan.lemon@noaa.gov

Today's Session

- Cospas-Sarsat evolution (4 slides)
- Comparison of LEOSAR, GEOSAR and MEOSAR systems and their effects on beacon design (14 slides)
- Encoded locations (1 slide)
- Beacon limitations and objectives (2 slides)
- New beacon process and timeline (2 slides)
- SAR *requirements* for new beacons

Requirements and Objectives???

- Manufacturers, what do you think...
 - ...should be *required* of new beacons operating through MEOSAR to help SAR personnel or beacon users?
 - ...should be *specified* for new beacons or the MEOSAR ground system to improve Cospas-Sarsat efficiency or effectiveness?

Cospas-Sarsat Milestones

- 1978-82: Experiment to locate beacons with satellites
- 1979: 1st France-Canada-USSR-USA MOU signed;
 406 MHz set aside by ITU for low-powered distress beacons
- 1982: First 121.5 MHz save
- 1982-85: LEOSAR D&E
- 1984: 1st 406 MHz save (Dec '84)
- 1985: LEOSAR declared operational
- 1987: C-S Secretariat established in London

Cospas-Sarsat Milestones (con't)

- 1988: ICSPA was signed to satisfy an IMO GMSS requirement for 'free and continuous availability of the satellite system on a nondiscriminatory basis'
- 1993: 406 MHz beacons mandated by IMO
- 1995: 1st GEO satellites operating
- 1998: GEOSAR declared operational
- 1999: ICAO required 406 MHz ELTs
- 2005: Secretariat moved to Montreal
- 2006: IBRD established
- 2009: Satellite processing of 121.5 terminated

Cospas-Sarsat Milestones (Con't)

- Today: (950,000) 406 MHz beacons; 30 MCCs; 55 LEOLUTs; 21 GEOLUTs; 27,000+ lives saved (6,300+ in the U.S.)
- Today: U.S. (GPS), Russia (GLONASS) and ESA/EC (Galileo) working to include 406 MHz repeater instruments on future Medium Earth Orbiting (MEO) satellite constellations
 - C-S MEOSAR Implementation Plan (R.012) approved
 - Proof-of-concept essentially complete
 - Constellations will be compatible with existing beacons
 - SAR components of constellations will be interoperable
 - MEOSAR D&E phase is about to begin

Cospas-Sarsat Milestones (Projected) • 2010-11: Requirements definition for new beacons

- 2010-11: Requirements definition for new beacons designed to operate through MEOSAR
- 2011-12: Cospas-Sarsat beacon/MEOLUT *specifications*
- 2012-13: IMO/ICAO/national beacon standards updated and beacons developed
- 2014-15: New beacons appearing on the market, MEOSAR D&E will be completed, 98% of the Earth will be covered with MEOLUTs and 'full constellation' of satellites will be operational
- 2018: MEOSAR will be declared '*fully operational*' and beacon population will approach 2.1 million
- 2022: LEOSAR might be no longer in operation by this time

Combined LEOSAR/GEOSAR

LEO satellite ascends and descends between the Earth's Poles while the Earth revolves below

Doppler Processing

NOTE: this process requires a very stable beacon oscillator...factor in high cost of current beacons. Shape of curve used to determine longitude by estimating distance from known satellite track...results in a real location and an 'image' Unlocated GEO alert if beacon is not near the North or South Poles + LEO delay waiting for a satellite to pass within view

406 MHz Beacons

LEO with potential unlocated alert or possible delay to determine which of two locations is real

406 MHz

Beacons

SAR Resources

USMCC (NOAA)

2 U.S. Ground Stations

LEO-GEOSAR Limitations/Concerns

- Non-continuous coverage for located alerting
- Sub-optimal probability of detection of beacons
- Need for at least three bursts for a location during what could be a short satellite exposure time
- Frequent dependence on *low elevation* satellites
- Need for very precise beacon oscillators to support Doppler locating and ambiguity resolution...one cost driver for beacons
- Long average *time to deliver* located alerts

Generally what the MEOSAR constellation will look like...except with up to 75 + satellites instead of 16

MEOSAR System Concept

MEOSAR Concept

MEOSAR Coverage with Two Ground Stations

MEOSAR Characteristics

- More than ten times as many satellites as LEOSAR providing continuous global coverage
- Optimum satellite altitudes with larger footprints
- Single beacon burst locating
- Better accuracy
- Single location per beacon signal (no ambiguity)
- Better probability of detection
- System located alerts delivered in less than ten minutes (hopefully < five minutes)

Cospas-Sarsat Satellite Constellations			
	LEOSAR ¹	GEOSAR ¹	MEOSAR
Number of satellites:	6	5	about 75
Altitude (km/miles)	1,000 (620)	35,900 (22,300)	$19,140 - 23,222 \\ (11,900 - 14,400)$
Earth orbit time	90 – 100 minutes	24 hours	676 – 845 minutes
Satellite footprint (% Earth surface)	6%	43%	37 - 39 %
System Locating Technique	Doppler	N/A	TDOA and FDOA ⁴
Satellite instruments	Store and forward ²	'Bent pipe' ³	'Bent pipe' ³
Satellite Orbits	Polar orbits	Above the equator	Multiple planes inclined between 55 - 64.8 degrees from the equator

¹ Current Systems

² Holds data until the satellite is within view of ground station

³ Relays data immediately, so coverage is lost if no ground station is within view of the satellite

⁴ Time difference of arrival (TDOA) and frequency difference of arrival (FDOA)

Encoded Locations

- Some beacons can acquire and transmit GPS locations; these are called *location protocol beacons*
- GPS locations are much more accurate than locations determined by LEOSAR, but also much less reliable (only 70 % of alerts from LPC beacons include the GPS location)
- When alerts include encoded locations, LEOSAR, GEOSAR and MEOSAR can all relay the data

Beacon Limitations/Concerns

- Beacon cost, size and weight
- Power hungry...beacon needs a *battery* able to produce 1,728 five watt signals every 24 hours plus support homing signals and other functions
- Mix of complex *coding* protocols
- Sub-optimal for 406 MHz homing (e.g., non-continuous signals)
- Many beacons do not acquire and send *encoded locations*
- *Transmissions* of 406 and 121.5 MHz signals are both compromised by sharing an antenna
- Communications are one-way

Beacon Modernization Objectives Overcome *limitations* of current 406 MHz beacons

- Overcome *limitations* of current 406 MHz beacons operating through the LEOSAR-GEOSAR system
- Identify operational 'requirements' of SAR personnel and beacon users...things they need or want...for new beacons operating through MEOSAR
- Develop Cospas-Sarsat and other national and international *standards* for new beacons and for the MEOSAR ground system that match the 'requirements'
- Expand beacon usage within communities that should use beacons
- Dramatically improve Cospas-Sarsat *performance and capabilities*

Development of New Cospas-Sarsat Beacons for MEOSAR

Beacon Implementation Timeline

Source: Joint Committee Document JC-24/8/3 (Canada)

Requirements and Objectives???

- Manufacturers, what do you think...
 - ...should be *required* of new *beacons* operating through MEOSAR to help SAR personnel or beacon users?
 - ...should be specified for new beacons or the MEOSAR ground system to improve Cospas-Sarsat efficiency or effectiveness?

SARSAT and Beacon Modernization

Beacon Manufacturer Workshop May 21, 2010

Dan Lemon 443 964-4204 dan.lemon@noaa.gov